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Abstract. Vector quantization (VQ) is an elementary technique for
image compression. However, searching for the nearest codeword in a
codebook is time-consuming. The existing schemes focus on software-
based implementation to reduce the computation. However, such schemes
also incur extra computation and limit the improvement. In this paper,
we propose a hardware-based scheme “Pruned Look-Up Table” (PLUT)
which could prune possible codewords. The scheme is based on the obser-
vation that the minimum one-dimensional distance between the tested
vector and its matched codeword is usually small. The observation in-
spires us to select likely codewords by the one-dimensional distance,
which is represented by bitmaps. With the bitmaps containing the posi-
tional information to represent the geometric relation within codewords,
the hardware implementation can succinctly reduce the required compu-
tation of VQ. Simulation results demonstrate that the proposed scheme
can eliminate more than 75% computation with an extra storage of 128
Kbytes.

1 Introduction

VQ is an important technique for image compression, and has been proven to
be simple and efficient [1]. VQ can be defined as a mapping from k-dimensional
Euclidean space into a finite subset C of Rk. The set C is known as the codebook
and C = {ci|i = 1, 2, . . . , N}, where ci is a codeword and N is the codebook size.
To compress an image, VQ comprises two functions: an encoder and a decoder.
The VQ encoder first divides the image into Nw × Nh blocks (or vectors). Let
the block size be k (k = w × h), then each block is a k-dimensional vector.
VQ selects an appropriate codeword cq = [cq(0), cq(1), . . . , cq(k−1)] for each image
vector x = [x(0), x(1), . . . , x(k−1)] such that the distance between x and cq is
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the smallest, where cq is the closest codeword of x and cq(j) denotes the jth-
dimensional value of the codeword cq. The distortion between the image vector
x and each codeword ci is measured by the squared Euclidean distance, i.e.,

d(x, ci) = ‖x − ci‖2 =
k−1∑

j=0

[x(j) − ci(j)]2. (1)

After the selection of the closest codeword, VQ replaces the vector x by the index
q of cq. The VQ decoder has the same codebook as that of the encoder. For each
index, VQ decoder can easily fetch its corresponding codeword, and piece them
together into the decoded image.

The codebook search is the major bottleneck in VQ. From equation (1), the
calculation of the squared Euclidean distance needs k subtractions and k multi-
plications to derive k [x(j)−ci(j)]2s. Since the multiplication is a complex opera-
tion, it increases the total computational complexity of equation (1). Therefore,
speeding up the calculation of the squared Euclidean distance is a major hurdle.
Furthermore, an efficient hardware implementation is also attractive to reduce
the VQ computation.

Many methods have been proposed to shorten VQ encoding time [2,3,4,5,6].
These schemes emphasize computation speed, table storage and image qual-
ity. The existing schemes focus on software-based implementation to reduce the
computation. However, such schemes also incur extra computation and limit the
improvement. Moreover, these schemes did not utilize the geometrical informa-
tion implied in the codewords. In this work, we propose an adaptive scheme
“Pruned Look-Up Table” (PLUT) which selects the computed codewords. The
new scheme uses bitmaps to represent the geometric relation within codewords.
Accordingly, the search procedure could refer the information to sift unlikely
codewords easily. Since the lookup procedure is simple enough, the proposed
scheme is suitable for hardware implementation. With the bitmaps containing
the positional information to represent the geometric relation within codewords,
the hardware implementation can succinctly reduce the required computation of
VQ. Simulation results demonstrate the effectiveness. The rest of this paper is
organized as follows. The proposed scheme and implementation are presented in
Section 2. Section 3 addresses the performance evaluation. Section 4 concludes
the work.

2 PLUT Method

To compress an image through VQ, the codebook must be generated first. The
codebook is gathered through approach, like the Lindo-Buzo-Gray (LBG) al-
gorithm [7], based on one or multiple images. The quality of the compressed
images ties to whether the codebook is well trained, i.e., the squared Euclidean
distance between the tested vector and the matched codeword in the adopted
codebook is small. Thus, a well trained codebook could improve the compression
quality. As implied in the equation of squared Euclidean distance calculation,
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a well-trained codebook can lead to the implication that the one-dimensional
distance, |x(j) − cM(j)| where 0 ≤ j ≤ k−1, between the tested vector x and the
matched codeword cM should be relatively small.

To further verify our assumption, the distribution of the smallest one-
dimensional distance mink−1

j=0 |x(j) − cM(j)| between the tested vectors and their
matched codewords is presented in Fig. 1. The codebook is trained according to
the image “Lena”, then the six images are compressed by full search VQ. The
quality of the images are estimated by the peak signal-to-noise ratio (PSNR),
which is defined as PSNR=10·log10(2552/MSE) dB. Here the mean-square error
(MSE) is defined as MSE= (1/m)2

∑m−1
i=0

∑m−1
j=0 [α(i,j) − β(i,j)]2 for an m × m

image, where α(i,j) and β(i,j) denote the original and quantized gray level of pixel
(i, j) in the image, respectively. A larger PSNR value has been proven to have
preserved the original image quality better. For the compressed images with bet-
ter quality, including “Lena” and “Zelda”, most of their smallest one-dimensional
distances are less than 8. Furthermore, 99% smallest one-dimensional distances
are less than 4. However, the ratio is reduced to 93% ∼ 97% for the other images
since their quality of compression is also decreased.
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Fig. 1. The Distribution of the Smallest One-dimensional Distance for Different Images

We use a two-dimensional VQ as an example. There are two codewords, C1

(3, 1) and C2 (2, 2). To calculate the nearest codeword for the tested vector, V1

(1, 2), the squared Euclidean distances to C1 and C2 are 4 and 2, respectively.
Hence C2 is chosen as the result. Also, C2 is the nearest codeword for V2 at (2,3).

Since the smallest one-dimensional distance between the tested vector and
the selected codeword is small with a well-trained codebook, the property can
be utilized to fasten VQ computation. Our idea is to represent the positional in-
formation by bitmaps and refer the bitmaps to select likely codewords. For each
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Fig. 2. Two-dimensional Per-Codeword Bitmaps (R = 0)

codeword i, we adopt k per-codeword bitmaps to record their positional infor-
mation for each dimension. Each bitmap consists of m bits to correspond every
position. The bth bit in the per-codeword bitmap for dimension j of codeword
i is set to one if b is within a certain range of ci(j), say R. The per-codeword
bitmaps for the previous example are shown in Fig. 2. The range R is equal to
zero. For the first tested vector V1, it is within the designated range of C1 in the
vertical dimension, and only C1 is considered for vector quantizing. Similarly,
V2 is within the range of C2 in the horizontal dimension. Thus C2 is selected as
the closest codeword for V2 directly.

Although the scheme could sift likely codewords easily, it is not totally accu-
rate. In Fig. 2, C1 is presumed as the closest codeword for V1. However, C2 is the
one with the smallest Euclidean distance to V1, and false match is caused. In ad-
dition, two kinds of bricks would cause problems: unoccupied bricks (e.g. bricks
at (0,0) or (1,3)) and repeatedly occupied ones (e.g. bricks at (2,1) or (3,2)).
If the tested vectors locate in the unoccupied bricks, they are not assigned to
any codeword, i.e. every codeword must be computed to decide the closest one,
and there is no speedup. For the vectors locating in the repeatedly occupied
bricks, the codewords whose range occupies the vectors would be calculated for
the Euclidean distance, thus the speedup is lessened.

To less the problem, a wider range could be adopted, as shown in Fig. 3 where
the renewed bitmaps for R = 1 are presented. With the new range, most bricks
are occupied by at least one codeword’s square. However, the conjunct bricks
are also increased due to the larger occupied region.

A suitable range is thus important to the performance of the proposed scheme
since a wider range will increase the number of candidates while a narrow range
might result in a null set. In our experiments, various ranges are investigated to
evaluate the performance and the image quality. Next, the construction/lookup
procedure of the searchable data structure is introduced.



Hardware Accelerator for Vector Quantization 1011

1 0

0 0

0 1

1 1

1 1

0

0

1

0

1

1

1

1

0

1

C1 C2

C1

C2

C1

C2

V2

V1

Per-Position Bitm ap

0 4321

0

4

3

2

1

Fig. 3. Two-dimensional Per-Codeword Bitmaps (R = 1)

2.1 The Construction of the Searchable Data Structure - Positional
Bitmaps

Although the per-codeword bitmaps could present the positional information,
they are not searchable. This is because accessing bitmaps for each codeword
is inefficient. To utilize the bitmaps based on the proposed concept, the per-
position bitmaps are generated from the per-codeword bitmaps. In Fig. 3, we
also illustrate the relationships between the per-position bitmaps and the per-
codeword bitmaps.

The per-position bitmap for position p at dimension j is defined as BR
j,p,

where D is the preset range. The ith bit is defined as BR
j,p(i) which is set to one

if p − R ≤ ci(j) ≤ p + R. The pseudo code is given in Fig. 4. For each range
R, the required storage is m × N per dimension. With a typical 16-dimensional
codebook with 256 entries and 256 gray levels, the occupied memory is 128
Kbytes.

Bitmap-Filling Algorithm
For each dimension j, ∀j ∈ {0, k − 1} BEGIN

For each position p, ∀p ∈ {0, m − 1} BEGIN
For each codeword i, ∀i ∈ {0, N − 1} BEGIN

If p − R ≤ ci(j) ≤ p + R, BR
j,p(i) = 1.

Otherwise, BR
j,p(i) = 0.

END
END

END

Fig. 4. Bitmap-Filling Algorithm
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2.2 The Lookup Procedure

The PLUT scheme combines bitmap pruning and TLUT to achieve fast pro-
cessing. For a tested vector, the jth value xj is used to access the bitmap BR

j,xj
.

Each set bit indicates that the corresponding codeword is within a range R from
the tested vector at dimension j. Accordingly, the Euclidean distance is calcu-
lated by accessing TLUT. The pseudo code for lookup procedure is listed in
Fig. 5. First, the multiple bitmaps are performed OR operations to derive the
representative bitmap DR. To check whether the ith bit in DR is set, we further
perform AND operation with DR and a pre-generated bitmap with only ith bit
set (00 . . . 010 . . . 0). If the value is larger than zero, then codeword i is one of
the candidate.

Vector Quantization by PLUT Algorithm
For each vector x BEGIN

Fetch the BR
j,xj

, where j ∈ dim.

DR =
⋃

j∈{0,k−1} BR
j,xj

.

For each set bit DR(i) BEGIN
Calculate Euclidean distance d(x, ci) where

d(x, ci) =
∑k−1

j=0 TLUT1[|x(j), ci(j)|].
If d(x, ci) ≤ min distance BEGIN

min distance id = i
min distance = d(x, ci)

END
END
min distance id is the quantized index for x.

END

Fig. 5. Vector Quantization by PLUT Algorithm

We use the previous example in Fig. 2 to explain the procedure, where R = 0.
For the tested vector V1 “11”, the second per-position bitmap “00” at x-axis
and second one “10” at y-axis are fetched. The representative bitmap “10” is
derived by performing OR to these two bitmaps. Consequently, the representa-
tive bitmap is performed AND operation with “10” to indicate that the first
codeword is one of the candidate and the computation for the squared Euclidean
distance between V1 and C1 is thus carried out. Next, the representative bitmap
is performed AND operation with “01” again. Since no set bit is found in the
resulted bitmap, the calculation for the squared Euclidean distance between V1

and C2 is omitted.

2.3 Hardware Implementation

The hardware implementation is preferable for the PLUT scheme. This is be-
cause PLUT requires memory bus with N -bit wide (typically N = 256). Even
in the modern software platform, the memory bus is less than 128 bits. In Fig.
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6, we present a conceptual model for the hardware implementation. This im-
plementation includes K independent RAM modules for per-position bitmaps.
Bitmap of each dimension is located in a storage. To perform the search, the
per-position bitmaps are fetched from RAM modules simultaneously and per-
formed OR operation. Then, the resulted bitmap DR enables the codewords
in the candidate for calculating the Euclidean distance in ALU. Notably, this
architecture is suitable for parallelized hardware or pipelining.

3 Performance Evaluation

We have conducted several simulations to show the efficiency of PLUT. All im-
ages used in these experiments were 512 × 512 monochrome still images, with
each pixel of these images containing 256 gray levels. These images were then
divided into 4 × 4 pixel blocks. Each block was a 16-dimensional vector. We
used image “Lena” as our training set to generate codebook C. In the previous
literature [1, 2], the quality of an image compression method was usually esti-
mated by the following five criteria: compression ratio, image quality, execution
time, extra memory size, and the number of mathematical operations. All of
our experimental images had the same compression ratio, hence only the lat-
ter four criteria are listed to evaluate the performance of the proposed scheme.
The quality of the images are estimated by the PSNR, which is addressed in
Section 2. The extra memory denotes the storage needed for executing PLUT
scheme. As for the mathematical operations, the number of the calculated code-
words is also considered since the operations for each codeword are identical. In
addition, the compression time is evaluated based on software implementation
since the performance of hardware implementation can be illustrated from the
number of calculated codewords.

The decompressed images based on the PLUT scheme with different ranges
are shown in Fig. 7. Basically, the image quality of PLUT is improved gradually
as the range increases, such as the PSNR value for R = 0 is worse than that
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(a) R = 0 (PSNR=29.852) (b) R = 1 (PSNR=31.254)

(c) R = 2 (PSNR=31.823) (d) R = 4 (PSNR=32.500)

Fig. 7. The Decompressed Lena Images of PLUT Scheme

for R = 1 and R = 2. However, the quality of some area shows different trend,
as shown in the circles of Fig. 7(a),7(b),7(c). This is mainly because for several
blocks, there is no candidate derived by PLUT with R = 0, thus full search
is executed for these blocks. As the range increases to 1 or 2, some codewords
are selected for calculation of Euclidean distance. Nevertheless, the codewords
cannot yield better precision than full search. The occurrence of such faults
ties to the quality of the used codebook. Also, these faults can be alleviated by
adopting larger range or enabling full search as the squared Euclidean distance
is larger than a certain value. As shown in Fig. 7(d), the image quality is almost
identical to VQ and TLUT while PLUT range is enlarged to 4.

The performance of the software-based implementation is illustrated in Table
1. The experiments were performed on an IBM PC with a 500-MHz Pentium
CPU. VQ indicates the vector quantization without any speedup. The ranges
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for PLUT vary from 0 to 8. With a smaller range, the image quality is degraded
since the occurrence of false matches is increased. Nevertheless, the calculated
codewords are reduced by the per-position bitmaps, the execution time is less-
ened as well. Full search requires no extra storage while TLUT needs 256 bytes.
For PLUT scheme, the extra storage is 128 Kbytes for bitmap and 256 bytes for
TLUT. If the hardware implementation is considered, the bitwise operation cab
be parallelized to further shorten the vector quantizing time.

Table 1. The Performance of PLUT with Different Ranges

Full PLUT Scheme
Lena Search TLUT R=0 R=1 R=2 R=4 R=8

PSNR 32.56 32.56 29.85 31.25 31.82 32.50 32.55

Time (sec.) 1.30 1.09 0.23 0.42 0.53 0.67 0.83

Codewords 256 256 19 44 59 78 99

Storage (byte) 0 256 128K (PLUT) + 256 (TLUT)

Table 2 illustrates the performance of PLUT based on different images. For
the images with better compression quality in full search, PLUT generates more
candidates since the codewords are usually close to the compressed blocks. While
the range is enlarged to 4, PLUT can derived compressed images with compa-
rable quality to full search while requiring only half execution time.

Table 2. The Performance of PLUT based on Different Images (N=256)

Images Lena Girl Airplane Zelda

Code- Code- Code- Code-
Metrics wordsTimePSNRwordsTimePSNRwordsTimePSNRwordsTimePSNR

Full Search 256 1.30 32.56 256 1.30 30.75 256 1.30 29.53 256 1.30 33.35

TLUT 256 1.09 32.56 256 1.11 30.75 256 1.11 29.53 256 1.09 33.35

PLUT,R=0 19 0.23 29.85 17 0.21 29.08 14 0.18 27.57 20 0.24 31.98

PLUT,R=1 44 0.42 31.25 40 0.39 30.14 32 0.33 28.86 44 0.42 33.06

PLUT,R=2 58 0.53 31.82 54 0.50 30.35 44 0.41 29.15 59 0.54 33.25

PLUT,R=4 78 0.67 32.50 72 0.64 30.45 58 0.52 29.35 78 0.67 33.32

In summary, with R = 2, the proposed scheme can reduce more than 50%
computation without losing image quality. If a hardware implementation is
adopted, 25% computation can be further eliminated since only a fourth of code-
words are calculated for squared Euclidean distance. Therefore, only a fourth of
computation is required.
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4 Conclusion

In this study, we present a new novel algorithm “PLUT” for codebook search
in VQ. The new scheme is based on the observation that the minimal one-
dimensional distance between the tested vector and the matched codeword is
usually small. To represent the geometrical information, PLUT adopts bitwise
data structure, which is simple and storage efficient. By setting a given range,
the PLUT can sift out unfeasible codewords easily, hence it is suitable for hard-
ware implementation. A conceptual hardware implementation is also revealed.
Since the performance of PLUT ties to the quality of codebook, PLUT is suit-
able for high-quality image compression. The performance evaluation further
demonstrates that 75% computation can be reduced with an extra 128 Kbytes
storage.
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