
Fast Vector Quantization by Using Gated Look-Up

Table

Hung-Yi Chang
leorean@isu.edu.tw

Department of Information Management
I-Shou University

Kaohsiung, Taiwan 840, ROC

Pi-Chung Wang, Chia-Tai Chan
{abu, ctchan}@cht.com.tw

Telecommunication Laboratories
Chunghwa Telecom Co., Ltd.

Taipei, Taiwan 106, ROC

Tung-Shou Chen
tschen@ntit.edu.tw

Department of Information Management
National Taichung Institute of Technology

Taichung, Taiwan 404, ROC

Abstract
Vector quantization (VQ) is an elemen-

tary technique for image compression.
However, the complexity of searching
the nearest codeword in a codebook is
time-consuming. In this work, we present
an adaptive scheme “Gated Look-Up Table”
(GLUT) which is able to prune codewords
rapidly and uses a positional information
to represent the geometric relation within
codewords. The lookup procedure could
jump to the entry codeword and sift candi-
date codewords easily. This scheme might
also cooperate with existing schemes to
fasten search speed. The simulation results
demonstrate this effectiveness of GLUT.

Keywords: Image compression, nearest
neighbor search, vector quantization, look-
up table.

1 Introduction

Currently, images have been widely used
in computer communications. The sizes of
images are usually huge and need to be com-
pressed efficiently for storage and transmis-
sion. Vector quantization (VQ) is an impor-
tant technique for image compression, and
has been proven to be simple and efficient
[1]. VQ can be defined as a mapping from
k-dimensional Euclidean space into a finite

subset C of Rk. The finite set C is known as
the codebook and C = {ci|i = 1, 2, . . . , N},
where ci is a codeword and N is the code-
book size.

To compress an image, VQ comprises two
functions: an encoder and a decoder. The
VQ encoder first divides the image into
Nw × Nh blocks (or vectors). Let the block
size be k (k = w×h), then each block is a k-
dimensional vector. VQ selects an appropri-
ate codeword cq = [cq(0), cq(1), . . . , cq(k−1)] for
each image vector x = [x(0), x(1), . . . , x(k−1)]
such that the distance between x and cq

is the smallest, where cq is the closest
codeword of x and cq(j) denotes the jth-
dimensional value of the codeword cq. The
distortion between the image vector x and
each codeword ci is measured by their
squared Euclidean distance, i.e.,

d(x, ci) = ‖x− ci‖2 =
k−1∑
j=0

[x(j) − ci(j)]
2. (1)

After the selection of the closest codeword,
VQ replaces the vector x by the index q of
cq. The VQ decoder has the same codebook
as that of the encoder. For each index, VQ
decoder can easily fetch its corresponding
codeword, and piece them together into the
decoded image.

The codebook search is one of the ma-
jor bottlenecks in VQ. From equation (1),

~ 1982 ~

the calculation of the squared Euclidean dis-
tance needs k subtractions and k multipli-
cations to derive k [x(j) − ci(j)]

2s. Since
the multiplication is a complex operation,
it leads to the increase of the degree of the
total computational complexity of equation
(1). Therefore, speeding up the calculation
of the squared Euclidean distance is a major
hurdle.

Many methods have been proposed re-
cently to shorten VQ encoding time [2–6].
The simplest one among them is the look-
up table (LUT) method [4]. It suggests that
the results of the [x(j) − ci(j)]

2s for all possi-
ble xj and yij should be pre-computed first,
and then stored into a huge matrix, the
LUT. Suppose the values of x(j) and ci(j) are
within [0, m− 1]. Then the size of matrix L
should be m × m and

L =

0 12 · · · (m − 1)2

12 0 · · · (m − 2)2

...
...

. . .
...

(m − 1)2 (m − 2)2 · · · 0

(2)

Given any x(j) and ci(j), we can get the
square of their difference directly from
L[x(j), ci(j)]. Therefore, equation (1) could
be rewritten as follows:

d(x, ci) =
k−1∑
j=0

[x(j)−ci(j)]
2 =

k−1∑
j=0

L[x(j), ci(j)].

(3)
LUT can be employed to avoid the subtrac-
tions and the multiplications in equation
(1). Hence, it is an efficient method.

Rizvi et. al. proposed the other LUT-
based scheme in [6] to fasten the calcula-
tion of squared Euclidean distances, namely,
truncated look-up table (TLUT) methods.
In their first method, Rizvi et. al. pre-
computed the results of the (x(j) − ci(j))

2s
for all possible |x(j)− ci(j)|, and stored them
into matrix T1. Here

T1 = [0, 12, 22, · · · , (m − 1)2]. (4)

Since the calculation complexity of absolute
subtraction |x(j) − ci(j)| operation is much

simpler and more efficient than multiplica-
tion operation, it could be derived before
accessing the LUT. Hence, according to the
matrix T1, equation (1) can be expressed as
follows:

d(x, ci) =
k−1∑
j=0

T1[|x(j) − ci(j)|]. (5)

The size of matrix T1 is m. It is still too
large for some special designs, such as VLSI
implementations and systolic architectures
[3, 5].

As a result, Rizvi et. al. proposed
another method to further reduce the ex-
tra storage [6], which is the second TLUT
method. In this method, Rizvi et. al. pre-
computed the matrix T2 with T2[i] = (i×r)2,
where i = 0, 1, 2, · · · , m/r − 1, and r is a
value of 2 to the power of an integer. There-
fore, matrix T2 can be shown as

T2 = [0, (r×1)2, (r×2)2, · · · , (r×(m/r−1))2].
(6)

Based on the matrix, equation (5) can be
rewritten as follows:

d(x, ci) =
k−1∑
j=0

T2[b|x(j) − ci(j)|/rc]. (7)

where the elements of T2 are numbered
starting from zero. Note that r is the re-
ducing factor of this method. The size of
matrix T1 is r times bigger than that of ma-
trix T2. Thus, this method is more suitable
for VLSI implementation. In addition, since
r is a value of 2 to the power of an inte-
ger, we can employ bit shifting instead of
the division operation used in (7). Hence,
the second TLUT method employs one ab-
solute subtraction, one shift operation and
one memory access in matrix T2 to achieve
the computation of [x(j)−ci(j)]

2. The second
TLUT method is superior to other meth-
ods in terms of its smaller memory usage,
but the image quality is poorer. This is be-
cause matrix T2 cannot keep all of the pos-
sible squared numbers. As a result, the sec-
ond TLUT method is prone to making some

~ 1983 ~

mistakes when computing the calculations
of the squared Euclidean distances.

As discussed above, the designed criteria
of LUT-based schemes emphasize computa-
tion speed, table storage and image qual-
ity. However, the number of calculated
codewords has not mentioned since these
schemes did not utilize the geometrical in-
formation implied in the codewords. In
this work, we propose an adaptive scheme
“Gated Look-Up Table” (GLUT) which re-
duces the computed codewords. The new
scheme uses two integers to represent the
geometric relation within codewords. Ac-
cordingly, the search procedure could refer
the integers to sift candidate codewords eas-
ily. The scheme might also cooperate with
existing schemes to fasten the search speed.
Simulation results demonstrate this effec-
tiveness. The rest of this paper is orga-
nized as follows. The proposed scheme is
presented in Section 2. Section 3 addresses
the performance evaluation. Section 4 con-
cludes the work.

2 GLUT Method

The VQ selects the codeword with the
smallest Euclidean distance to the tested
vector. Intuitively, the selected codeword
could be treated as the nearest point in the
k-dimensional space. In the ideal case (with
a well-trained codebook), the distance of
each dimension between the tested vector
and the selected codeword should be very
close. Hence it is possible to filter out unfea-
sible codewords by referring the positional
information.

We use a two-dimensional case as an ex-
ample. There are two codewords, C1 (3, 1)
and C2 (2, 3), as shown in Fig. 1. To cal-
culate the nearest codeword for the tested
vector, V1 (1, 2), the squared Euclidean dis-
tances to C1 and C2 are 5 and 2, respec-
tively. Hence C2 should be chosen as the re-
sult. If we consider the distances in the ver-
tical axis, C1 and C2 will be selected. Thus
the Euclidean distance to these two vectors
is calculated as well as the full search. How-

ever, only C1 is chosen for V2 and the calcu-
lation for C2 could be avoided.

0 4321

C2

V1

C1

C1: (3,1)

C2: (2,3)

0

4

3

2

1 V2

V1: (1,2)

V2: (1,1)

Figure 1. A Two-dimensional Example.

Generally speaking, if the codeword is
close to the tested vector in the Euclidean
space, the distance in each dimension ought
to be short as well. To ease the explana-
tion, we adopt bitmaps to represent the po-
sitional information. For each codeword,
there is a per-codeword bitmap with m bits
for each selected dimension j, where 0 ≤
j ≤ k − 1. Each bit in the per-codeword
bitmap corresponds to a position in dimen-
sion j. Assuming that the pre-defined range
is D. The bits from ci(j)−D to ci(j)+D is set
to one for codeword i.

Figure 2 shows the resulted bitmaps for
the example in Fig. 1. The distance D is
defined as one. If the tested vector locates
in a shadowed brick of a certain codeword,
that codeword would be one of the candi-
dates in the vector quantization. For exam-
ple, V2 is located within the shadowed bricks
of C1, rather than C2. Thus C2 will not be
considered in the vector quantization. The
bricks at third row are shared by squares
of C1 and C2. Therefore, the tested vectors
positing in these bricks will select C1 and C2

as candidates.

In some conditions, there are several un-
occupied bricks remaining. For the tested
vectors located within these bricks, the
bitmaps are useless since there is no can-
didates could be derived. As a result, each
codeword has to be calculated to decide the
one with the smallest Euclidean distance.
To nail down the problem, a wider range

~ 1984 ~

C2

C1

1 0

0 1

0 1

1 1

1 0

C1 C2

Figure 2. Per-Codeword Bitmaps. (D = 1)

could be adopted. However, the conjunct
bricks are also increased due to the larger
squares, as shown in Fig. 3.

1 0

0 1

1 1

1 1

1 1

C1 C2

C1

C2

Figure 3. Per-Codeword Bitmaps. (D =
2))

A suitable range is thus critical to the
performance of the proposed scheme since
a wider range could increase the number
of candidates while a narrow range might
cause null set. In our experiments, vari-
ous ranges are investigated to evaluate the
performance and the image quality. Conse-
quently, the construction/lookup procedure
of the searchable data structure “GLUT” is
introduced.

2.1 The Construction of the Searchable Data
Structure - Gated Look-up Table

Though the per-codeword bitmaps could
present the positional information, they are
not searchable. This is because accessing

bitmaps for each codeword is inefficient. To
fasten the lookup speed, the gated look-up
table are proposed. Before the gated look-
up table is constructed, the intermediate
data structure “per-position bitmap” is in-
troduced, as shown in Fig. 4

Per-Codeword Bitmaps

1 0

0 1

0 1

1 1

1 0

C1 C2

Per-Position Bitmap

C2

C1

Figure 4. Relationships Between Per-
Codeword Bitmaps and Per-Position
Bitmaps. (D = 1)

The per-position bitmap for position p at
dimension j is defined as BD

j,p, where D is
the preset range. The ith bit is defined as
BD

j,p(i) which is set to one if p−D ≤ ci(j) ≤
p + D. The pseudo code is given below.
For each range D, the required storage is
m × N bits per dimension. With a typical
256-entry codebook and 256 gray levels, the
occupied memory is 8 Kbytes.

Bitmap-Filling Algorithm
For each per-position bitmap BD

j,p BEGIN
For each bit BD

j,p(i) BEGIN
If p − D ≤ ci(j) ≤ p + D, BD

j,p(i) = 1.
Otherwise, BD

j,p(i) = 0.
END

END

The per-position bitmap is simple, but it
is not storage-efficient. For a specific dimen-
sion and range, the size of the per-position
bitmap is 8 Kbytes. Furthermore, the per-
position bitmap is suitable for hardware im-
plementation by using a wider memory bus.

~ 1985 ~

Table 1. The Performance of GLUT.
GLUT Scheme

Lena VQ TLUT D=16 D=32 D=48 D=64 D=128

PSNR 32.563 32.563 31.294 32.347 32.531 32.554 32.563
Execution Time (sec.) 1.372 1.041 0.201 0.371 0.52 0.671 1.011
Calculated Codewords 256 256 48 92 130 164 243
Memory Size (byte) 0 256 512 (GLUT) + 256 (TLUT)

Consequently, we address how to use the
GLUT to reduce the required storage.

Before executing the bitmap-filling algo-
rithm, the codewords are sorted according
to jth value for the selected dimension j.
The sequence could be descending or as-
cending order. In the following, the bitmap-
filling algorithm will construct the bitmap
in the form (00 . . . 011 . . . 1100 . . . 00) where
1’s are consecutive. This is because the
sorted codewords also occupy ordered set
bits. Hence the first and the last set bits
could be recorded as two integers and con-
struct the gated look-up table. For each po-
sition p, each element of the GLUT consists
of GS

p and GE
p which express the number of

the first and last set bits. With the simpli-
fied representation, the GLUT could achieve
fast vector quantization.

The lookup procedure combines fast
pruning by GLUT and fast processing by
TLUT. For the quantized vector x, the xjth
entry of the GLUT, GS

xj
and GE

xj
, is fetched.

Each codeword whose index i satisfies GS
xj
≤

i ≤ GE
xj

will be selected as the candidate,
and the Euclidean distance is calculated by
coupling TLUT. The pseudo code for lookup
procedure is listed below.

VQ Algorithm by GLUT
For each vector x BEGIN

Fetch the GS
xj

and GE
xj

.

For each codeword i, where GS
xj
≤ i ≤ GE

xj

BEGIN
Calculate Euclidean distance d(x, ci)

d(x, ci) =
∑k−1

j=0 TLUT1[|x(j), ci(j)|].
If d(x, ci) ≥ max distance BEGIN

max distance id = i
max distance = d(x, ci)

END
END
max distance id is the result for x.

END

3 Simulation Results

We have conducted several simulations to
show the efficiency of GLUT. All images
used in these experiments were 512 × 512
monochrome still images, with each pixel
of these images containing 256 gray lev-
els. These images were then divided into
4 × 4 pixel blocks. Each block was a 16-
dimensional vector. We used image “Lena”
as our training set and applied the Lindo-
Buzo-Gray (LBG) algorithm to generate our
codebook C. In the previous literature [1,2],
the quality of an image compression method
was usually estimated by the following five
criteria: compression ratio, image quality,
execution time, extra memory size, and the
number of mathematical operations. All of
our experimental images had the same com-
pression ratio. Thus only the latter four
criteria are employed to evaluate the per-
formance. The quality of the images are
estimated by the peak signal-to-noise ra-
tio (PSNR). A larger PSNR value indicates
better preserved the original image qual-
ity. The extra memory denotes the storage
needed to record the GLUT and TLUT. As
for the mathematical operations, the num-
ber of calculated codewords is considered
since the operations for each codeword are
identical.

The experiments were performed on an
IBM PC with a 500-MHz Pentium CPU.
Table 1 shows the experimental results of
GLUT. VQ indicates the vector quantiza-

~ 1986 ~

(a) D = 16 (PSNR=31.294) (b) D = 32 (PSNR=32.347) (c) D = 64 (PSNR=32.554)

Figure 5. The Decompressed Lena Images of GLUT Scheme.

tion without any speedup. The ranges for
GLUT vary from 16 to 128. With a smaller
range, the image quality is degraded since
the occurrence of false matches is increased.
Nevertheless, the calculated codewords are
reduced by per-position bitmap, the execu-
tion time is lessened as well. VQ requires
no extra storage while the TLUT needs 256
bytes. The extra storage is 512 bytes for
GLUT and 256 bytes for TLUT. The de-
compressed images are shown in Fig. 5.
While GLUT range is enlarged to 64, the
image quality is almost identical to VQ and
TLUT.

4 Conclusion

In this study, we propose a new algorithm
“GLUT” for fast codebook search. The
GLUT adopts simple data structure with
merely two integers to represent the geo-
metrical information. By setting a given
range, the GLUT could sift out codewords
easily, and the GLUT is suitable for soft-
ware implementation. The extra storage is
512 bytes and the performance could be im-
proved with a factor of five. In the future,
we will apply this concept to the codebook
training.

References

[1] A. Gersho and R. M. Gray, Vector
Quantization and Signal Compression.
Boston, MA: Kluwer, 1992.

[2] T. S. Chen and C. C. Chang, “An Ef-
ficient Computation of Euclidean Dis-
tances Using Approximated Look-Up
Table,” IEEE Trans. Circuits Syst.
Video Technol., vol. 7, pp. 594-599,
June 2000.

[3] G. A Davidson, P. R. Cappello and
A. Gersho, “Systolic architectures for
vector quantization,” IEEE Trans.
Acoust., Speech, Signal Processing, vol.
36, pp. 1651-1664, Oct. 1988.

[4] H. Park and V. K. Prasana, “Mod-
ular VLSI architectures for real-time
full-search-based vector quantization,”
IEEE Trans. Circuits Syst. Video Tech-
nol., vol. 3, pp. 309-317, Aug. 1993.

[5] P. A. Ramamoorthy, B. Potu and T.
Tran, “Bit-serial VLSI implementation
nof vector quantizer for real-time image
coding ,” IEEE Trans. Circuits Syst.,
vol. 36, pp. 1281-1290, Oct. 1989.

[6] S. A. Rizvi and N. M. Nasrabadi, “An
efficient euclidean distance computa-
tion for quantization using a truncated
look-up table,” IEEE Trans. Circuits
Syst. Video Technol., vol. 5, pp. 370-
371, Aug. 1995.

~ 1987 ~

