290

A Scalable Queue Management for Shared Buffer
Switch Architecture

Pi-Chung Wang , Chia-Tai Chan and Yaw-Chung Chen

Abstract— In this paper, we present the design of a scal-
able queue management for shared buffer switch architec-
ture by using non-linked-list implementation. In the tradi-
tional switch design, linked-list is the widely adopted im-
plementation to maintain the packet buffer. However, to
design a linked-list architecture in hardware increases the
size of chip and also limits the operating frequency. By
using the non-linked-list design, the proposed architecture
not only offers a wire-speed transmission rate, but also pro-
vides an efficient Shifting Page Queue Manager (SPQM) for
queue management. It may fulfill the emerging needs for
high-speed LAN switches. Moreover, it is feasible in imple-
mentation.

Index Terms— Ethernet, Gigabit Networking, VLSI.

I. INTRODUCTION

ITH the demand towards higher-speed and high

bandwidth, the LAN switches become popular and
acceptable on today’s LAN systems. Among existing
switching architectures, the shared buffer switch is favor-
able for its efficient buffer utilization. In the traditional
switch design, linked-list is the widely adopted implemen-
tation to maintain the packet buffer. However, to design
a linked-list architecture in hardware increases the size of
chip and also limits the operating frequency. The main
concerns of shared buffer approach are the need for mem-
ory high-access-rate and the increased complexity of the
queue manager if it were to support multicasting and multi-
priority classes. By adopting the newest RAM technol-
ogy such as DDR-RAM or Rambus, memory speed is fast
enough to support several Giga bps ports. Obviously, to de-
sign an effective queue manager is necessary for high speed
LAN switches. In this paper, we propose a scalable queue
management for shared buffer switch architecture by using
non-linked-list implementation. The proposed architecture
not only offers a wire-speed transmission rate, but also pro-
vides an efficient Shifting Page Queue Manager (SPQM) for
queue management. It may fulfill the emerging needs for
high-speed LAN switches.

The organization of this paper is as follows. Section II
makes an overview of the shared buffer queue management
and switch architecture. In Section III, we present the
architecture and operation of our proposed buffer manage-
ment. Section IV contains a thorough description of the
proposed SPQM. Finally, Section V gives some concluding
remarks.

The authors are with the Department of Computer Science and
Information Engineering, National Chiao Tung University, Hsinchu,
Taiwan, R.O.C. (e-mail: {pcwang, ycchen}@csie.nctu.edu.tw).

Chia-Tai Chan is now with the Telecommunication Laborato-
ries, Chunghwa Telecom Co., Ltd, Taipei, Taiwan,R.O.C.(e-mail:
ctchan@ms.chttl.com.tw).

shared packet buffer

transmitted packet

received packet
—>
—
—

MUX

\J

—

—
packet information

Address
Resolution

LOGIC e

write commlf * read control

Queue manager

. . output control
destination information

Fig. 1. The shared buffer switch architecture overview.

II. OVERVIEW OF THE SHARED BUFFER SWITCH
ARCHITECTURE

In the shared buffer switches, packets from all input ports
are stored in buffer memory. To maintain correct deliv-
ery, packets are stored into associated output queues ac-
cording to their destination ports by the queue manager,
as shown in the Figure 1. The queue manager generates
control signals which control the read/write accesses of
the packet buffer and the output demultiplexer to achieve
packet switching.

Various implementations of the queue manager have
been proposed with the shared buffer switches. The
address-based approach has been widely adopted in most
existing designs including [2][5][6]. Each packet in the
shared buffer has a corresponding next address field which
designates where the next packet of the same output queue
is stored. These next address fields form linked-lists of the
output queues. Packets are read from the heads of the
lists for transmission in the output ports, and the incoming
packets are attached to the tails of their associated linked-
lists. However, the existing linked-list implementation of
the address-based queue management is inefficiency. First,
it reduces the utilization of buffer space by using the extra
address fields to provide FIFO service. Second, some buffer
memory locations, named bubbles, have to be reserved for
linked-list operations. These bubbles also reduce the buffer
capacity.

Since the packet size is variable, such as the packet
length of Ethernet frame might vary from 64 bytes to 1518
bytes. To utilize the packet memory space well, current de-
sign handles packet memory allocation by segmenting the
whole packet memory into equal size block (page here af-
ter). Ounce receive a packet, buffer manager would check its
size and allocate corresponding minimum number of pages.
This scheme avoids the external fragmentation problem,
but causes the internal fragmentation problem. To choose

a appropriate page size might alleviate this. Clearly, it
needs extra descriptor because one packet may be divided
into several pages. Hence, the smaller the page size is, the
more descriptor it needs.

III. PROPOSED SHARED BUFFER SWITCH
ARCHITECTURE

In the proposed switch architecture, packet memory is
shared dynamically among the active ports, as shown in
Figure 2. Once a packet arrives the switch input port, it
will be transmitted to PMC for further processing. The
PMC will check the packet header and modify it if neces-
sary. PMC also allocates the available page to store the
incoming packet. The available page information is stored
in a word vector. Each page map to an element in this vec-
tor as show in Figure 3. The word vector consists of three
field: valid bit, used bytes and reference count. While a
page is used, its corresponding valid bit will be set to 1.
PMC have to check the packet size and find out enough
unused pages to store the packet. If the page size is 256
bytes, at most 6 pages is needed for the maximum Ethernet
frame size. The field "used bytes” keeps the information
about how much useful data is stored in this page. PMC
updates this field after laying up the packet into packet
buffer.

After storing the packet, PMC transmits the packet
header and the packet storage information to the forward-
ing engine. If the packet is a multicast/broadcast packet,
forwarding engine will update the reference count in PMC.
The reference count records the number of ports to which
this packet will be send. It is used for multicast/broadcast
capability. If the reference count is 1, it means this packet
is unicast. While this packet is transmitted, the page will
be released at once. Otherwise, the reference count will be
subtracted by 1 and its related page will be released until
the reference count equals 0. The reference count should
be less than the total number of ports in a switch.

While the queue manager notifies PMC to send a packet,
PMC will receive page addresses belonged to the same
packet and calculate the packet length by accumulating
the ”"used bytes” field. Then, it sends request to the packet
buffer for transmitting exactly amount of data to the out-
put port. The size of the word vector is proportional to
the buffer size. For example, a packet buffer with 2 Mbytes

CPU
forwarding
Forwarding
Engine
Packet header &

information
Memory Information.

Queue Manager

Packet Buffer

Transmitted Packet

" Information

Memory Control T

Packet Memory
Controller -

Memory Bus

Received Packet

v \4
Rx

Tx Rx Tx
Buffer | Buffer Buffer | Buffer

MAC MAC

Fig. 2. The proposed shared buffer switch architecture.

291

Word Vector

Valid bit | = — — — o o — =)

. -, sl ===l |=a|=
Reference Count

Used bytes | o | 2
2

Packet Buffer

Fig. 3. The relation between the word vector and packet buffer.

will be divided into 8K pages with 256 bytes per page. The
length of ”unused bytes” is 8 bits, and 7 bits is large enough
to keep the reference count. Thus 2 bytes are needed for
each page and the total size of word vector is 16 Kbytes.
In addition, the PMC can be extended to support multi-
shared buffer by adding per-buffer word vector and extra
load-balance control logic.

IV. A ScALABLE BUFFER MANAGER

To design a scalable queue manager, the implementation
architecture must has a regular structure that well suits to
the VLSI design and the number of flows can grow flexibly.
The logic diagram of queue manager is shown in Figure
4. Each FIFO queue is with associated SPQM for an out-
put port. Assume that the ith Packet is forwarded to the
output port 1, and the value in the parentheses is the ad-
dress of the related page. As shown in the diagram, the iy,
packet is divided into pages 2, 5 and 6 respectively. Each
queue element should carry information of page physical
address (PA here after) and the location of this page in a
packet. It is essential to perform packet level transmission.
Therefore, the queue header will fetch the page address un-
til the last page of the packet. The last page of the packet
can be identified by the last page flag.

Therefore, if we use a 16-bits register to store the page
information, we can set the first bit as last page flag and
still have 15 bits which can allocate up to 8 MB packet
buffer with 256 bytes per page. This is large enough in a
LAN environment. By building per-port FIFO, we can re-
duce the complexity of hardware implementation of linked-

QUEUE 1 QUEUE 2 QUEUE 3

third page of i, packet
(6)

second page of i,, packet
(5)

first page of i, packet (2)

& & <&

Fig. 4. The logical diagram of queue manager.

list. One may argue that the utilization of queue element
might become the system bottleneck. We will present two
enhancements architecture in Section IV.A to solve this
problem.

A. Realization of the SPQM

We proposed a feasible architecture to realize the SPQM
which is similar in idea to the available VLSI Sequencer
chips [3] with additional circuit added, as shown in Figure
5. The service discipline of the architecture is explained
in the following. Each module in the SPQM includes one
register, multiplexer, valid bit and a simple control logic.
The PA is stored in the 16-bit register. The valid bit of the
empty module is set to 1. Otherwise, it is set to 0. When
the new PA is to be inserted into FIFO, the controller just
appends the new PA to the empty modules in the FIFO. By
performing the logical AND at each module with its valid
bit and the inverted valid bit in the previous module, only
the first empty module will produce 1. Thus the control
logic can decide whether the module should accept the PA
or not. Besides, the behavior in Module 1 is a little bit
different with others since it is the first module in the FIFO.
It only has to check its valid bit for verifying if it is the first
empty module.

When an HOL page number is scheduled for transmis-
sion, its page number is first retrieved from controller, and
the content of all 16-bit registers will be shifted one posi-
tion to the right by triggering the Advance signal. Hence
the PA in the FIFO will be overwritten automatically. The
head module will check if the fetched PA is the last page
of the packet by checking the first bit of register, which is
last page flag. If the value is 0 (false), the Head Module
will fetch the next one PA and repeat the above steps until
the last one. The fetched PA will be stored in the address
buffer of head module. Once it collects a complete packet,
it will notify the PMC to transmit packet from the col-
lected PA. Once the PMC has transmitted the packet, its
related reference count in word vector will be subtracted
by 1.

Obviously, this architecture is relative simpler than
linked-list approach and is suitable to implement in hard-
ware. The total demanding address storage is the size of
address buffer (1518 /page size) plus the address storage in
all modules, which is about half storage as needed in the

I
i Module 2 Module 1 Head of FIFO
valid bit valid bit

. 2 :L = o Address
i 2 o 210 ’ Buffer
—< <
! 1, bit of the register
! A A
| t :) ? /

41——‘ Control Logic [« [Control Logic F;
| Advance Advance
|

-

Zyss

-

Incoming PA

Fig. 5. The architecture of the SPQM.

292

—
Multicast PA

Module 2

valid bit

QL
Multicas!
Address
Buffer
47—‘ Control Logic "7 ‘ Control Logic :
LT e e

Module 1

valid bit

4| Address
O " Buffer

1, bit of the register

Head of FIFO

o150y 1g-91
1151303 N1

o
15
ER
12 &
R
2

—
Incoming PA

Fig. 6. The multicast architecture of the SPQM.

linked-list approach. Thus this architecture is applicable
to implement in high speed.

B. SPQM Multicast Architecture

In the previous architecture, the page’s PAs of multi-
cast/broadcast packet will be appended to several SPQMs.
The PMC can only free the allocated buffer space after the
packet leaving all ports, i.e. the reference count is 0. If
we can transmit the multicast packet at the same time,
then we can release the buffer space earlier and increase
the buffer utilization.

The architecture of SPQM can be modified to transmit
multicast packet to output port at the same time by adding
a 16-bit compartor at each module and a multicast buffer
at the head of FIFO, as shown in Figure 6. Once the head
of FIFO identifies this is a multicast packet, it will broad-
cast its PAs to all other FIFOs. The head of FIFO which
received these PAs will store the information in the extra
multicast address buffer. At the same time, each module
will receive these multicast PAs. By comparing the value
with the register value of module, the control logic is able
to decide whether to retain or to shift-right the content of
the registers. The page’s PAs of multicast packet in the
register will be overwritten automatically. Then, the mul-
ticast packet will be transmitted from FIFOs.

Since the multicast packet will be transmitted from FIFO
at almost the same time in this architecture, the related
buffer space can be released earlier. Thus we can improve
the buffer utilization as well as decrease the packet loss
ratio.

V. CONCLUSIONS

In this work, we present the hardware realization of a
scalable queue management. It is relative simpler to imple-
ment in hardware than linked-list approach. With the de-
mand towards higher-speed and high bandwidth, the Gbps
LAN switching is highly desirable. To design such a high
speed system, it needs a more simple and efficient queue
management scheme. The proposed implementation archi-
tecture has a regular structure that well suits to the VLSI
design. The number of virtual connections can grow flexi-
bly since a large cell buffer capacity can be accommodated
by cascading the chips. Moreover, by connecting chips in
parallel, a large cell pool can be supported. The realiza-

tion approach should be able to accommodate the real-time
packet streams.

1]

REFERENCES

A. Agrawl, A. Raju, S. Varadarajan and M.A. Bayoumi, A Scal-
able Shared Buffer ATM Switch Architecture, VLSI, 1995. Proc.
pps 256-261.

Yuhua Chen and Jonathan S. Turner, Dynamic Queue Assign-
ment in A VC Queue Manager for Gigabit ATM Networks, IEEE
ATM Workshop’98, Proc. pps. 3-10.

Massoud R. Hashemi, Alberto Leon-Garcia, A General Prupose
Cell Sequencer/Scheduler for ATM Switches, In Proc. IEEE IN-
FOCOM’97, pp. 29-37, March 1997.

Yu-Sheng Lin and C. Bernard Shung, Queue Management for
Shared Buffer and Shared Multi-buffer ATM Switches, In Proc.
IEEE INFOCOM’96, pp. 688-695, March 1996.

T. Kozaki, etal., 32x 32 Shared Buffer Type ATM Switch VLSI’s
for B-ISDN’s, IEEE Journal on Selected Areas in Communica-
tions, vol. 9, pp. 1239-1247, October 1991.

Rudiger H. Hoffmann and Rudi Muller, A Multifunctional High-
Speed Switch Element for ATM applications, IEEE Journal of
Solid State Circuits, vol. 27, pp. 1026-1040, July 1992.

293

